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Abstract 

In this paper we present the numerical analysis of spectral methods when non-constant 
coefficients appear in the equation, either due to the original statement of the equations 
or to take into account the deformed geometry. A particular attention is devoted to the 
optimality of the discretization even for low values of the discretization parameter. The 
effect of some “overintegration” is also addressed, in order to possibly improve the accuracy 
of the discretization. 
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1. INTRODUCTION. 

Spectral methods were introduced around 20 years ago by S. A. ORSZAG in order to provide a high 
order accuracy for the numerical simulation of partial differential equations. The original idea was to use 
truncated Fourier series to approximate the (smooth) solution when the problem was supposed to  be provided 
with periodic boundary conditions. In order to tackel problem with more general boundary conditions 
(Dirichlet or Neumann type), the set of (algebraic) polynomials replaced the set of truncated series, but the 
characterization of the unique discrete function that would provide the numerical solution w a s  still achieved 
following the original strategy. This enters in the context of the collocation method where the numerical 
solution is chosen so as to satisfy the original partial differential equation at  some suitably chosen collocation 
points. Of course the choice of the set of collocation points is of fundamental importance for the accuracy 
of the method and the first remark is to notice that the number of collocation points must be equal to the 
dimension of the space of approximation. Otherwise, the problem could, in general, be overspecified. 

When other authors arrived to the analyeis of the problem, ([l], [2], [3], [4] among others) they realized 
that the collocation method could be interpreted as a variational problem with numerical integration. In 
fact, it is quite common now to realize that the spectral methods are very close to the finite element method 
in its p or h - p version, where convergence is achieved by increasing the order of the polynomial degree and 
not by diminishing the size of the elements. It is in this framework that the domain of application of the 
spectral methods has been generalized. The plain spectral method suffers from being conetrained to very 
simple domains: they are limited to be slightly deformed squares (in 2-D) or cubes (in 3-D). The idea to 
couple domain decomposition techniques to the spectral discretization developed rapidly in order to  cope 
with this initial drawback ([5], [SI). However, by starting from the strong formulation of the equations, this 
can only produce the Schwarz algorithm ([ti], [7)) or a strong coupling between the elements ([5]), where the 
solution (in the case of second order elliptic problems) is searched as a global C1 function that is piecewise 
polynomial. This results in some drawbacks. First, in the Schwarz algorithm, there is an increase of the 
work due to  the double computation over the overlapping region (recall that this one has to be large enough 
in order to achieve a good convergence rate of the algorithm [7), [SI). Second there is a lack of optimality of 
the approximation in the strong coupling formulation - both from the numerical analysis point of view and 
from the algorithmic point of view - a consequence of an overconstraint problem due to the C' matching. 

In this context, understanding of the similarity between the collocation method and a variational for- 
mulation used with consistent numerical quadrature brings a lot of flexibility. Indeed, the coupling required 
in the nonoverlapping decomposition of the domain is weaker (only Co) and allows for constructing an o p  
timal method. This has lead to the spectral element method (91, [lo], [ll] and more recently to the mortar 
element method [12], [13], [14]. The variational method involves integrals that can be computed (with or 
without numerical quadratures) separately over each subdomain. The spectral element method uses consis- 
tent quadrature formulas and in this respect (but not only this one) conserves the spirit of former spectral 
discretization (the other points being the use of tensorial basie and tensorial evaluations of the residuals). It 
has been shown ([lo], [15]) that the method can still be interpreted as a collocation method within each ele- 
ment wheras a suitable equation is satisfied a t  the interface of each subdomain. There are still fundamental 
differences between the spectral and the finite element methods that are important as regards the numerical 
implementation of the method, however the general philosophy is the same. The point that we want to 
address in this paper is related to one of the differences between the p or h - p version of the finite element 
method and the spectral methods, more precisely to one possible drawback of the spectral method. Indeed, 
as we have said, the spectral method can be interpreted in a finite element framework when a particular nu- 
merical integration formula is used. Derived from the collocation method, the numerical integration formula 
is constrained to be based on a certain number of points. This number is not related to  the fact that some 
quantity must be well (or exactely) computed, but has to be equal to the dimension of the discrete space. 
Using a vocabulary that is standard in the finite element context, the points of the numerical quadrature 
formula have to be unisolvent with respect to the discrete space. Thie ie a restriction with reepect to the fact 
that in finite element methods, people use more general integration formulas based on accuracy considera- 
tions. In this sense, there is often an overintegration in the finite element statement. The current spectral 
methods use these "consistent" (with respect to the numerical discretization) quadrature rules with a priori 
no lack of accuracy. As shown in the appendix, the possibility to use an overintegration in the context of 
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spectral methods is however possible, but is not of importance in most interesting cases as demonstrated in 
this paper. 

The situations where overintegration could be of importance are those where non-constant coefficients 
are involved, either because they are preeent in the original formulation of the equations or because they are 
introduced when a deformed geometry is considered and a mapping to a domain of reference is used. Indeed, 
it is in these cases that the numerical integration based on N+1 Gauss-Lobatto points is not accurate enough. 
We analyze in details these two situatione and point out the cases where overintegration is required. The 
analysis is illustrated with many numerical experiments. This allowe to strengthen our theoretical analysis 
since the exact value of some constants could be of importance and are not exactely taken into account in 
the theoretical analysis. 

The analysis of the effect of overintegration has never been addressed in the spectral context. Previous 
analyeis of Legendre spectral approximations of problem with non-constant coefficients [lo] or with deformed 
geometries (71 could in this sense be misleeding as the results presented there were proving a spectral type 
convergence (Le. faster than any algebraic rate if the solution is analytic) but were not optimal. The baeic 
ingredient to get optimality is a new result of [l6] and deals with the fact that the interpolation a t  Gauss-type 
points is optimal. 

The paper is organized as follows: 
In section 2, we consider the case of original non-constant coefficients equations and we analyze in which 
cases the overintegration may improve the accuracy of the approximation to allow for optimal results. An 
appendix presents some numerical considerations on the implementation that shows that the tensor product 
evaluations can still be preserved even in the case of overintegrations. 
In section 3, we analyze the case where the non-constant coefficients are induced by the treatment of a de- 
formed geometry. We prove that in this situation the overintegration is unnecessary to provide the optimality 
of the approximation. 
In sections 2 and 3 we also present some remarks related to the impact of our analysis as regard the design 
of the best schemes in the case of deformed geometries. 

Acknowledgements: The question of the importance of overintegration has been raised during a meeting 
with I. BABUSKA. The many discussions with A. T. PATERA have been very enlightening. We thank both 
of them for their help. This research has been supported in part by NSF under ASC-8806925, ONR and 
DARPA under contract N00014-85-K 0208. Part  of this work has been done while the first author was in 
residence at ICASE, NASA Langley Research Center, Hampton, VA. 
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2. ANALYSIS OF SPECTRAL APPROXIMATION WITH NON CONSTANT COEFFICIENTS. 
2.1 - The One Dimensional Case. 

Let us consider the following problem: Find u E H;(-l, l), such that 

This problem is supposed to  be well posed in H;(-l, 1) in the sense that the bilinear form a, defined over 
(Hi(-l, 1))’ 88 follows 

1 1 

a b ,  v )  = 1, PIL,VadZ + 1, q u v d x ,  (2) 

is elliptic and continuous over (H;(-l, 1))’. In fact, for eake of simplicity, we shall aasume that there exists 
three constants p1,pa and 9’ such that 

In addition, the forcing function f is supposed to be a t  leaat in L’(-l, 1). We want to approximate this 
problem by a spectral element method. Our first work will be to design the diecrete apace that will approx- 
imate H;(-l, 1). Given a fixed integer K, we shall first consider a partition of (-1, 1) in K subintervals I k ,  

where 
Ik = ( a k , a k + l ) i  ( 5 )  

and the a k  are ( K  + 1) points in (-1,l) such that 

-1 = a0 < a1 < . . . < a K - 1  < OK = 1, 

(and the lengh a k + l -  a k  is supposed to be O(K-’).) 
The spaces of discretization are imbedded in 

where N is some integer and IPN(A) denotes the set of all polynomial8 of degree 5 N over A. This space 
will discretire Lz(-l, 1). In order to discretire H;(-l, l), let us introduce 

(which means that dII , , (CZk+l)  = d l r b + l ( a k + l )  and d vanishes at fl.) 
The second step in the discretization process is to define the discrete problem. As indicated in the 

introduction, the point of departure is the following continuoue variational formulation of the problem (1): 
Find u E H;(-l, 1) such that 

where the notation (., .) stands for the L’(-l, l)-scalar product. Given an integer MI M 2 N, the discrete 
problem is: Find UN E X N  such that 

i = (flu), E ‘)J (8) 

The definition of aM and (., .)M from a and (., .) will use a composed Gauss-Lobatto quadrature formula. 
More precisely, this one ie baaed on the data, over each segment 4 of a eet of M + 1 points ( f  
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and a set of associated weights pi' that are such that 

K M  

The definition of OM and (., .)M is now as follows: 

Remark 2.1. The standard spectral element method utilizes a consistent GauseLobatto quadrature rule, 
i.e. M = N. The cane M > N corresponds to an overintegration with respect to the standard spectral 
element method. Such an overintegration might be of interest to introduce in the cane of non-constant 
coefficients. The analysis that follows indicates the situations for which this is the cane. 

The interesting feature about (., .)M is that it defines over YM a discrete scalar product that is uniformly 
equivalent to the La(-l l  1) one. Indeed, it haa been proven in [4] that 

(Ad) 5 ( 4 , 4 ) ~  5 3 ( A # ) ,  Vd E YM.  (14) 

The following Lemma is then completely standard 

Lemma 2.1. There exists one and only one eolution U N  to problem (Q) and there exiets a constant C such 
that 

b N l b f l ( - i , i )  5 c ~ ~ f ~ ~ L - ( - l l l )  

Proof: The Lemma follows easily from the constatation that OM is unifoFmly continuous and elliptic over 
X N ,  i.e. there exists two positive constants a and 7 such that 

(15) 
a 

a l b N l l k l ( - i l i )  5 o M ( u N ~  u N )  5 7 l b N l b f ~ ( - i , i )  

and can be deduced from (3), (4) and (14). 

Our further analysis is devoted to the derivation of optimal error bounds for the numerical solution. 
The following Lemma is also standard and follows from (15). 

Lemma 2.2. There exists a constant C independent of N such that 

The following Lemma proves that the last term in (16) is of the same order BB the best &2(-1, l)-fit of 
f by polynomials of degree 2M - N. Let us first denote by C;(-l, 1) the space 

C%-h1) = t$ E La(--1I 11, W k  E C O ( f h ) , $ , I b  = $ h }  (17) 

and similarly, for any p, by H;(-l, 1) the space 

we have 
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Lemma 2.3. Let /A be a reel number > 1/2. For any $ E H;(-l, l), we have 

Proof: Let us first consider the case where M = N. Let us introduce] for any integer L, the La(-ll 1)- 
projection $L = l l~ ($ )  of $ over &(-l1 l), we have 

(21) 
( $ # ' u N ) - ( $ # u N ) N  = [($J~N)-($NJUN)] + [ ( $ N I ~ N ) - ( $ N I ~ N ) N ]  

+ [($N,uN)N - ($lvN)NI. 

I t  is an easy matter to  note that 

I($JuN) - ($NI ' N ) I  5 - $ ~ ~ ~ ~ ~ ( - ~ , ~ ) ~ ~ ' ~ ~ ~ L a ( - ~ ~ ~ ) I  (22) 

(23) 

Besides, let us denote by ZN the operator of interpolation from the set C i ( - l l  1) onto YN such that 

ZN$((') = $(('), V i  = 0,. . . N, V k  = 1,. . . , K. 
then 

(($NJ~N)N - ($,"N)N( = (($N -ZN$iUN)NI 
111 5 ($N - ZN$J $N - ZN$)za(uNJ uN)N J 

which, thanks to (14), gives 

l ( $ N ,  V N ) N  - ($1 5 CllllN - ~ N ~ l l L ~ ( - l l l ) l l ~ N l l L ~ ( - l l l )  

- < c(ll$ - $Nl lLa( -1 ,1 )  + ll$ - ~N$~~LJ(-l,l))~~~N~~~a(-l,l). (24) 

It  remains to estimate the middle term in (21). Let us first assume that K = 1, corresponding to a plain 
spectral method with no domain decomposition. The term in question can then be written as follows 

($NI UN) - ($N,VN)N = ( & N c N ) [ ( L N ,  LN) - (LN1 L N ) N I  

where, for any j E N 

are the coefficients of + (and thus of $N) and UN respectively in the bath of the Legendre polynomials 
(L j ) jEpy .  It ie then an easy matter to note, from (14), that 

I($NlvN) - ($NI W ) N I  5 ~ lr?rN~NIII~NIIz . ( - l l l )  

5 C/&I l l ~ N l l L ~ ( - 1 , 1 ) l ~ N l  1 1 ~ N l l L ~ ( - 1 , 1 )  
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The multidomain case where K > 1 is treated similarly over each subdomain zk and the error is the same 
(the notations are in this case just more complicated). Let us recall that we have for any p 2 0, and any L 

lld - W I l L ~ ( - l , l )  I c~-pIIdIIHc(-l,l)l Vd E HP(-1,1). (27) 

we derive by summarizing (21), (22), (24), and (26) that 

+ CN-'II3 - $N-lI lL~(- lJ)  

This completes Lemma 2.3 in the case M = N, after we recall that for any p > 1/2, and any L, we have [16] 

Ild - W I l L ~ ( - l , l )  I cL-pIIdIIH+lI1), Vd E H W ,  1). (28) 

so that the contribution of N-'Il$ - $N-iI lLa(- i , i )  is much smaller than the other terms. 
Let us now consider the cane where M > N and let us use the same strategy an before, with & M - N  in 

place of $N, where is some good approximation of $ of degree 5 2M - N that will not be necessarily 
its La(-l ,  1)-projection and will be precbed in the following. In order to prove Lemma 2.3, we must now 
e8 timate 

(29) 
VN) - vN)M = (3 ,  v N )  - ( 4 2 M - N ,  v N )  + (4aM--NIuN) - (4aM-N,  vN)M 

+ ( 4 2 M - N P N ) M  - ( r l 1 W ) M  

The first term and the second term are treated exactely in the same way an previously and we obtain 

and that 
(n + 1)Ln+l(Z) = (2n + l)ZLn(Z) - nLn-i(Z). 

A reiterate use of these two formulas yields 

Now using (14), we derive that 

so that, as before, 

J ( 4 2 M - N , W )  - ( 4 2 M - N , W ) M I  I cN-lllrl - 42M-N- l l ILy-1 , l ) .  (32) 

The treatment of the last term in (29) has to be different. Indeed the same proceedure as before would result 
in a bound of this term by the quantity - I M $ l l L a ( - 1 , 1 )  and thus a loss with respect t o  the optimality we 
could expect from the other terms. Besides, the numerical experiments (see fig 2.1) clearly shows a behaviour 
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like 11$ - $aM-NllLJ(-l,l).  In order to prove this type of convergence, let us go back to the c u e  K = 1 and 
note that (28) yields, for any p > 1/2 

1l~M411LJ(-1,1) 5 1l4llLJ(-1,1) + ~ - p l 1 4 1 1 H ~ ( - l , l ) ,  v4 E Hq- l , l ) .  (33) 

LFrom (14) it now follows that 

(&M-N, V N ) M  - ( $ I V N ) M  = ( d 2 M - N  - VN)M 

5 311zM (&M-N - $) l lLJ(  - l , l ) b N I b (  - 1,l) 

5 3[llrjraM-N - $IlLJ(-l,l) + M-’lIdaM-N - $ ~ ~ H ~ ( - l , l ) ] ~ ~ ~ N ~ ~ L J ( - l , l ) .  

At this point the correct 4OM-N will be chosen. We see that it has to be a good approximation of $ in the 
H@(-l, 1)-norm as well. This will be the c u e  of the projection of $ with respect to the H’’(-l,l)-norm 
over YN. It is proven in (171 that this element satisfies 

- Jh4-NllH;(-1,1) 5 cN”-pll$lhL(-l,l), 5 PI (34) 

and from (29), (30) and (32), the proof of Lemma 2.3 is complete also in the case where M > N. 
The second inequality (20) is quite trivial eince the middle t e r m  in (21) and (29) simply vanish. 

We are now in position to state the following 

Theorem 2.4. Let us suppose that the solution u to problem (I) belongs to Hk(-l, l), that p belongs 
to H;(-l, I) ,  q belongs to H;(-l, 1) and that f belongs to H&(-l, 1) and in addition that the four real 
numbers u - 1, p, u and p are larger than 1/2. Then the following error estimate holds 

Let us choose WN as being the beat fit of u in the H1(-ll 1)-norm. It follows from [17] that  

It. - ~ N I l H 1 ( - 1 , 1 )  I c N 1 - u l l u l l H ~ ( - l , l ) .  

If we now let GN be any polynomial in XN, it follows from (3) and (4) that, 

+ [ll‘- WNllH~( - l I1 )  + 11.- G N l h l ( - l , l ) l -  

The interest of this decomposition is that we can now choose GN, still close to u but such that the higher 
norms (Le. Hk(- l ,  1)) is uniformly bounded. This will be the case if we choose GIN as being the projection 
of u with respect to the H‘(-l, 1)-norm over XN. It is proven in [17] that this element satisfies 

tI‘ - GNIbf;(-l,l) 5 CN7-‘11UltH;(-l,l), V’Y 5 (39) 
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which together with (39) and the fact that M 2 N (so that 2M - N 2 N) gives 

min( u,u- 1) 
la(cnr, VN) - Q M ( ~ N ,  w)I 5 C[(2M - N)- 11% IIH;;'"(..- - "( - 1,1) 

+ (2M - ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ l l ~ ~ l l ~ ; ~ m ~ * ~ - ~ ( ~ l , ~ ~ l l ~ ~ l l X ~ ( - l , l )  

+ [ N 1 - - O  IIPIIH;(- 1, l )  Il4lXg(- ill) 

+ N- Ilnll H: (- 1, l )  1141H; (- 1,l)I 11~N11H1( - 1, l )  

Theorem 2.4 now follows from the fact that H'(- l ,  1) is an algebra when r > 1/2. 

Corollary 2.5. Let us suppose that the hypothesis of theorem 2.4 are fullfilled and in addition let us suppose 
that M = N.Then the following error estimate holds 

IIlPlIH;( - l , l ) l l ~ l l X ~ ~ ~ ( u + ~ l - )  (-111) 
It. - ~ N l l H ~ ( - - l , l )  - < q N m i n ( w , u -  1 , ~ )  

+ 1l~l1H;(-1,1)11~1lH~~~~*~-~(-~,1) + llmf~(-l,~)l 

Remark 2.2 - Interpretation of the results: In the practical computations, the more common situation 
is the one where the regularity of the solution ie limited by the regularity of the non-constant data. More 
precisely, and especially if we consider the extension to  the 2-D case that will be treated in the forthcoming 
section, we shall have 4 - 1 5 rnin(v, p, p). In thie case, the estimates given in corollary 2.5 prove that 
the optimality of the scheme is achieved with no use of overintegration. Thie statement ie confirmed by the 
numerical experiments shown in Figure 2.1. In the case where the regularity of the solution is better than 
the regularity of the non-constant data, we expect, from theorem 2.4 that some amount of overintegration 
is necessary to recover the optimality of the discretization. The numerical experiments of Figure 2.1 ale0 
confirm this statement with exactly the rate theoretically proven. It ie important to note that the possibility 



to include some amount of overintegration only is true in the caee where the variational formulation is 
the starting point of the discretization. The pure collocation method is incompatible with the concept of 
overintegration. 

2.2 - The Two Dimensional Case. 

Let us suppose here that the problem is- set on a square n = (-1, l)a and that no domain decomposition 
is used. The extension of our results to the spectral element case in very simple and it is only for sake of 
limitation of the notations that we restrict our analysis to thin particular case. Let us consider now the 
following test problem: Find u E H,'(n) such that 

where f is a given force (supposed to be in La(Q)) ,  A = (ai j )  is a 2 x 2 matrix with non-constant coefficients 
and we assume, for sake of simplicity, that it is bounded, symmetric, positive and non-degenerate, i.e. such 
that there exists 2 real numbers p1 > 0 and pa 2 0 such that 

I . i j l  5 Pa, V i , i  = 1,2. 

The variational formulation of this problem : Find u E Hi(n) such that 

(44) 

will be used aa a starting point to define the discrete problem. Here 

a(u,u) = ( (AVu,Vv) ) ,  V(u,u) E (H1(n))a. 

The space of discretization, XN, consists of all polynomiale of degree 5 N in each variable (ZJ"(C'2)) that 
vanish at the boundary 

X N  = P N ( ~ )  n ~ i ( n )  

The quadrature formula is baaed on (M + 
Gauss-Lobatto formula, and consists of the evaluation CQL,l 
first and second spatial direction respectively. The discrete problem is then: Find UN E X N  such that 

points derived by a tensor product of the one dimensional 
where the index 1 and 2 refer tg the 

where we have introduced the following discrete scalar product over P N ( n )  

and 
~ M ( U N , ~ N )  = ( ( A V ~ N ,  VUN))M.  

It  is standard to  note that, from (43) and (44), this problem has a unique solution and that in the case where 
M = N it ie equivalent to a collocation problem based on the (N + l)a Gauss-Lobatto points. The analysis 
of the error will be baaed on Lemma 2.3 and on the following complement of thin Lemma . 
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Lemma 2.6. Let p be a real number > 1/2. For any $ E HL(-l ,  l ) ,  we have 

Proof: This proof is derived from (29) by taking & M - N - ~  instead of & M - N ,  which haa the effect t o  cancel 
the middle difference in the right hand side of (29). 

Remark 2.3: It is an easy matter to note that (48) cannot be improved to yield a bound by the best fit by 
polynomials of degree 2M - N as it w a s  in Lemma 2.3. 

We are now in position to give the following error estimate 

Theorem 2.7. Let us suppose that the solution u to problem (42) belongs to H " ( n ) ,  that the coefficients 
(%j) of the matrix A belong to H " ( n )  and that f belongs to H P ( n )  and let us euppose in addition that the 
real numbers p,a - 1, p are larger than 1. Then the following error estimate holds 

a 

(49) 
11. - uNIIHl(n) 5 c[N'-"IIUIIH.(n) + (2M - N - l)-min(p'u-l) II%jUIIHm;l(r.--l)(n) 

i , j=1 

+ (2M - N)-Pllfll~#(n)l- 

Proof: The proof is derived from Lemma 2.2 (with obvious changes in the notations) following exactly the 
same lines as in the previous subsection. The only difference relies on the fact that Lemma 2.6 has to be 
used in the analysie of the quantity 

Here W N  is a polynomial of degree N (and not N - 1) suitably chosen to be an optimal approximation of u 
in the norm H " ( n ) ,  sayl and in any other lower norm from the bidimensional equivalent to (39) (see [IS]). 
As in (38) we can write 

+ cllu - WNllH1(n)* 

The first term on the left-hand side is a sum of four t e r m  that are similar. The first one reads a follows 

and can be bounded from Lemma 2.6 as 

(((z11WNzl V N + ) )  - ( (a l lWN+,  V N z ) ) M  5 C(2M - N - l)-min(p'u-l) I la i iuz  lIH-i+.-- i)(n) lluz IlLqn) 

The reason why (20) is not sufficient t o  analyze this term is that in the second direction, UN+ is of degree 
5 N. 

It follows easily from the analysis in the one dimensional case that we can prove 

which allows to derive Theorem 2.7. 
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Corollary 2.8. Let us  suppose that the hypothesis of theorem 2.7are fullfilled and let us  suppose in addition 
that M = N. Then the following error etltimate holds 

Remark 2.4 - Interpretation of the results: As pointed out in the previous subsection, there is no need to 
overintegrate in the general case where the solution has the name regularity an the non-constant coefficients. 
In 2 dimensions this conclusion still holds, however more weakly. Indeed, we have only been able to prove 
that the plain spectral or spectral element method provides the same accuracy aa the best fit by polynomials 
of degree one less. An overintegration with just one more point ( M = N + l )  is sufficient to recover the optimal 
accuracy. Although the results are asymptotically the same, this remark could suggest the use an overin- 
tegration. However, the associated increase in work makes it preferable to use a standard spectral element 
method with polynomial degree of N + l  (instead of N) since this is less expensive than an overintegration 
with M=N+1 (see appendix). It is only in the case where the spectral method would require much higher 
values of N that overintegration, coupled with the preservation of the tensor product formula, could be of 
interest. Fi'nally, note that the numerical experiments again confirm the theoretical statements with an even 
less important difference between the casea M = N + 1 and M = N. 
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3. ANALYSIS OF SPECTRAL APPROXIMATION IN DEFORMED GEOMETRIES. 

Our purpose in now to extend the previous analysin in the case where the non-constant coefficients 
are induced from the treatment of a non-rectangular geometry. Since the point here is not to analyze the 
behaviour of the approximation when original non-constant coefficients are present in the equation, we shall 
restrict our analysis to the simple problem of a Poisson equation in a deformed domain n which reads as 
follows: Find u E H t ( n )  such that 

V u V v d s d y  = 1 fvdzdv  Vu E H,'(n) .  

In order to explain an important issue related to the error analysis, let us first consider the simple case where 
the geometry in rectilinear but not rectangular. 

~ 

3.1 - Rectilinear Geometries. 

Let us suppose that the domain n is the trapezoid with vertices A=(O,O), B=(4,0), C=(O,l), and D=(4- 
4/a,l) ,  where a in a real number > 1. It is an ewy matter to check that the transformation F : ( r ,  8) I+ ( z , ~ )  
with 

4 
t = r(4 - -s), 

a (53) 
I Y = 8, 

l 

I is a one to one maping from the square 
correspondance between functions 4 defined over n and functions 

= (0,l) '  onto the domain n. We can now define a natural 
defined over fi aa follows 

4k14 = # ( F ( r ,  8)). 

This will allow to set the discrete problem. Indeed M we have indicated in the introduction, the spectral 
metod haa to be used on square domains. The other domains have to be mapped on such a reference 
square in order to allow for a spectral computation (the spectral element method allows to deal with more 
complex geometries, however, the elements must still be mapped to such a reference equare). The variational 
formulation transferred to the domain fi is the following: Find ii E Hi(fi) such that 

fGJ(r, s)drds,  V8 E H,'(f i ) .  

(54) 

1 aaae aiiao aiiae aa ao 
[ - - w I ( r ,  8) + [ - - + - -]q( r,  s) + - - 4 J(.,J) Br 8r ar as 8 s  at. ar at- 

The coefficients J and w i ,  i = 1,2,3,  are respectively the Jacobian of the transformation F and eome emooth 
geometric factor given by 

4 16ra 4s 4r 4s  
J = -(a - s), w1 = (1  + F ) l  wa = (4 - -)(-), w3 = (4 - -)a. 

a a 4  a (55) 

The discretization of the problem can now proceed and consists in the following: Find ON E P'(fi)flHi(fi) 
such that 

aM(GNi 6,) = ((531 G N ) ) M I  E PN(f i )  (56) 

where ((., .))M has been defined in (47) and 

WaaaN a e N  W 3 8 ; ~  8 o ~  
+ ((7x1 Z ) ) M  + ((7x1 X ) ) M .  

The coefficients in the right-hand side of (56) are extremely regular. We can deduce from the previous 
analysis that no overintegration is required to compute accurately this term in order to achieve optimal 
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approximation. On the contrary, the coefficients that arise in aM on the left-hand side, although analytic, 
may give rise t o  problem since the factor w i / J  has a pole where J vanishes, i.e. a t  a = a. This pole is not 
in A but can be very close to it. The similarity of this problem with the one treated in the second section 
(Figure 2.2) s e e m  to imply that, when a is sufficently close to  1, an overintegration is required to compute 
correctly aM in order to  get an optimal aproximation. However, surprisingly, the experiments performed in 
Figure 3.1 shows that no overintegration is required, even with those values of a that in the one-dimensional 
case induced a big error associated with the consistency error (50). The interpretation of this fact can be 
easily understood, a posteriori, as the pole of 1/J is compensated by the fact that the other part of the 
integrand vanishes and makes the term 

w l a i r  w a a f  
J ar J ar -- +-- +... 

more regular than it appears. In order to be more precise, let us state 

Lemma 3,l. Let us assume that the solution u to problem (52) belongs to H ' ( n )  for some real number 
u > 2. Then we have 

Proof: Let us go back to the original equation (52) and remark that 

and that a simple change of variable formula yields 

where 
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A3 = 4 3r ,8 ) ( - ( r18 ) (4  8 9 ~  - -8)drds 4 - (((4- - 8 ) -  4 ê u -))M 8 f i ~  
83 a a By'  88 

In the decompoeition (58), the terms A- are emall from the accuracy of the quadrature formula; the terma 
B- are emall since C N  is a polynomial that ie cloee to ir. More precieely, let ue denote by C the supremum 
of 11/J1, 1(1 - w l ) / J I ,  Iwa/J( ,  1w3/J1, on A. It is an eaay matter to derive that, for any index a, where 
a = 1, (2, I), (2,2), (3, l), (3,2) we have 

P P I  I ~ I I Z M Z ( ~ ~  - ~N)I I~a~n)I I f iNI IHl(n) ,  
a 

where t in the derivation etande for 8 or r .  Ueing (33), with p = 1, we derive 
8 

lB=l 5 c[llfi- Ci."IIHa(fi) + N-llIB,(ir - ~ N ) ~ ~ ~ i ( n ) I ~ ~ f i N ~ ~ ~ i ( n ) i  

5 ~ [ I I c  - cnrIIHl(fi) + ~ - ' l I f i  - ~ N I I ~ ~ ~ ~ ~ I I I ~ ~ I I ~ ~ ~ ~ ~ ~  (59) 

Let us denote now by 2 the supremum of 1, 1(4 - 4s/a)ll 14r/a1, on A. We derive aa in eection 2.2 that  

and the Lemma followe from (58), (59) and (60). 

In order to analyee the error in the approximation of problem (52) with (56), we firet note that (16) 
(with obvious changes of notatione) aleo holde in thie case. This leade to the following: 
Theorem 3.2. Let us suppose that the solution u ofproblem (52) belongs to H ' ( n )  and that f belong8 to 
H p ( n )  and let us suppose in addition that the real numbers (I - 1,p are larger than 1. Then the following 
inequality holds 

< ~ [ N 1 - u ~ ~ ~ ~ ~ ~ ~ ( ~ )  + C ( ~ M  - N - 1)'-"llUIIH-(n) \ I f i -  fi"JIH'(fi) - 
(61) + C(2M - N)-PllfllHqn) 

Proof: Thie is an easy consequence of (48) and of Lemma 3.1, if we chooee CN aa being the beet fit of ii in 
H " ( A )  by elements of PN(A). 

3.2 - General deformatione. 

Let ue suppose in thie subsection that the domain n is the image of fi by some mapping F : ( r ,8)  H 

(z = Fl(r, s ) ,  y = Fz( r ,  8 ) ) .  We no longer aaeume that F is bilinear, neverthelees we aaeume it haa eome 
regularity, more precieely, that it ia in H P ( h )  for eome p > 1, and that ita Jacobian J is larger than eome 
p1 > 0. The problem (52) is transferred onto fi as before and reade : 

Find 0 E H,'(fi) such that (54)  is satisfied, 

where the geometric factore w i ,  i = 1 ,2 ,3  are defined 88 followe 

The diecrete problem is now: 

Find i i ~  E PN(A)  n H,'(A) such that (56) is satisfied. 

Ueing here the eame technique aa in the proof of Lemma 3.1, and theorem 2.4, we obtain 
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Lemma 3.3. Let us suppose that the solution u to problem (52) belongs to H ' ( n ) ,  for some real number 
u > 2, that the deformation mapping F belongs to H P ( f i )  for some r e d  number /A > 1. Then the following 
inequality holds 

h 

Remark 3.2: It  is important, a t  this stage, to note that the regularity of ii and the regularity of %, where 
t is either 8 or r is bounded by the regularity of both u and F, which means that 

is the best result we can expect. Note also (but this is natural after the analysis of section 3.1) that it is 
only the regularity of F that is important and not a t  all the regularity of its inverse (as one could previously 
fear from the factor l/J). 

LFrom Lemma 3.3 and (65), we derive in a (now) standard manner the 

Theorem 3.4. Let us suppose that the solution u belongs to problem (521, belongs to H " ( f l ) ,  for some real 
number Q > 2, that the deformation mapping F belongs to H P ( f i )  for some real number p > 1 and that the 
forcing function f belongs to "'(SI) for some real number p > 1. Then the following inequality holds 

I I F I I ~ c ( n ) l l ~ l l ~ ~ - ~ ( ~ ~ - ) ( n )  
+ (2M - N - 1)-min(PP1)  I I F I l ~ ~ ( n ) l l ~ 1 I ~ - - ~ c ~ . - -  I)(n) ( 6 6 )  

+ (2M - N)-m'"('~P)IIFIIHr(n)IlfIIH-i~(r~,,(n)} 

< C ( N  -min( F -  1,u -- 1) Ilfi - fiNllH1(A) - 

Remark 3.3: In the light of the previous theorem, it appears that there is no need to overintegrate in 
the case where the deformation is responsible for non-constant coefficients in the formulation of the discrete 
problem, even if the geometry is very distorted. This k readily seen by comparing the results obtained in the 
theorem by choosing M >> N and M = N (the gain of just one degree is not, as explained in the remark 
2.4 sufficient to start the overintegration machinery). W e  can explain it a poeteriori now ae overintegration 
could allow t o  improve part of the consistency error term (57) in the case where the geometry mapping F L 
less regular then the solution u itself ( contrary to the case in section 2, this can happen, especially if domain 
decomposition is used). However, as pointed out in the previous remark, loss of regularity of F induces also 
a loss of regularity of ii which is the function that is of importance since it is this one that is approximated 
by polynomials. 

Remark 3.4: We have not considered here the case where the geometry mapping F itself is approximated 
by isoparametric polynomials. This effect can easily be analysed by following the same lines as previously 
and including the standard arguments adapted to the finite element discretization [18] 
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APPENDIX (in collaboration with A. T. PATERA.) 
In this appendix we consider the computational cost of using overintegration. We show that the matrix- 

vector products can still be evaluated efficiently using tensor product forma, and that for a fixed discretization 
(polynomial degree N), the increase in operation count ie a t  least a factor of d in lRd. Overintegration in 
attractive to use only if the convergence rate (error aa a function of polynomial degree) improves substantially. 
In this case we can achieve a fixed accuracy either with a low polynomial degree and overintegration, or a 
higher polynomial degree with consistent quadrature. I 

With no loas of generality we consider here the evaluation of the left hand aide of (48), 
I 

~ M ( U N , ~ N )  = ( (PVUNVUN))M (67) 

Here p represents a non-constant coefficient which either comes from the original strong formulation (as in 
(42)), or represents a geometric factor in the caae of deformed geometry, or both. The evaluation of (67) 
represents the computationally most expensive part in an iterative solution of (48). 

In order to implement (46) we require a basis for our high-order polynomial space XN. The choice 
of baak does not effect the error estimates, however it greatly effects the conditioning and sparsity of the 
resulting set of algebraic equations, and ie critical for the efficiency of parallel iterative solution procedures. 
We choose an interpolant basis to represent W N  E X N ,  

I N N  

p = o  9=0 

where (qy) E Q t (r,u) E] - 1,1['. Here the h,(z) are the one-dimensional ""order Lagrangian inter- 
polants through the Gauss-Lobatto Legendre points (, (hp  E n"N(] - 1, l[),h,((,) = 6,,), and wp, is the 
value of WN a t  the local node ((,,(,). In addition to (68) we require WN E X N  to honor the homogeneous 
Dirichlet boundary conditions. 

The bases (68) are now inserted into (67), and the test functions are systematically chosen to  be unity 
at one global node and zero at  all the other Gauss-Lobatto Legendre points. We then arrive a t  the following 
discrete statement, 

I 
I 
I M M N N  

a=Og=Om=On=O 

where we for convenience only have included the derivatives with respect to  the first (local) spatial direction. 
Here p, are the one-dimensional quadrature weights, and D and I are the one-dimensional derivative and 

I 

interpolation operators defined as: .. 

4 9  = h,(€P)' (71) 

Using tensor-product sum-factorization techniques [5] we can now evaluate (89) efficiently as follows: 

(Dai (Igj (pa PP (pap ( Dam (Ipnumn )))I )) 
where the expression in the innermost partenthesis is evaluated first. An evaluation in thie order results in 
the following operation count, 

MN' + M'N + M a  + M' + M'N + MN' = 2(M'N + MN' +Ma). 
In the caae where M = N (no overintegration), the interpolation operator becomes I,, = 6,, and (89) 

I reduces to the following expression, 

M N  



which can be efficiently evaluated in 2(N3 + N’) operations. 
We are now in a position to compare the computational cost with and without overintegration. In the 

case M = N + 1  the operation count in approximately twice the cost of using consistent quadrature (M = N) 
(in three dimensions the cost would increase with a factor of three). If M = 2N, say, the cost to evaluate 
(67) is four times the coet with M = N. The factors which determine whether overintegration is economical 
are the the difference in convergence rate with and without overintegration, and the specified accuracy of 
the discrete solution. 
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FIGURES 

Figure 2.1. A plot of various numerical resultr relevant to the approximation of the one dimensional problem 
(l), in order to analyze the effect of overintegration. We have considered here the care where q = 0 and 
different valuu of p and f are simulated and the effect of overintegration in adressed. The relation between 
p and f are alwayu chosen in such a way that the exact rolution in u = sin(dxz)c-' (of coume, we do not 
use the knowledge of the exact solution in the simulationr !I). The dbcretisation in based on K = 4 equal 
spectral elements for different valuer of the polynomial degree, N. First of all, since thin in the aim of the 
numerical scheme, we have computed the best fit of u in Hi(0 , l )  by piecewise polynomiab of degree < N 
(plot A); the plot prover a convergence better then exponential that in consbtant with the fact that the 
solution in entire. Next we consider the care p = 1 with no overintegration (plot 0 )  and we can check that 
the approximation in optimal and very close to the best fit. 

for variour valuu of 4. The care where a = .25, treated with no overintegration, 
b represented on the plot @ and we can remark that the approximation in still very good. The convergence 
rate does not however follow the best fit of u, but the best fit of p (conrintently with the corollary 2.5) that in 
a straight line in thin scale since p her a pole outside (0,l). Let UI now uw a more singular p, corresponding 
to 4 = .05. The plot 0 represents the w u l t r  when no overintegration in used. It in very c l w  to three other 
plotr repmenting the resultr when overintegration (M = 3N/2) in used to compute only the right-hand 
side (the contribution of f) (0) or only the left-hand ride (conwponding to p) (plot A), while the thud 
one mpmentr  the best fit of p (plot 0 )  in the La(O,l)-nonn by the discrete functionr. In order to  recover 
optimal resultr, overintegration must be a d  on both the left .nd the right-hand ride of the equation (plot 

We then choose p = 

4 * 

IO' 

10-1 

lo-' 

I a' 

10- 
w 

10- 

IO" 

104 Q 

Figure 2.1 
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1 

i 
I 

i 
Figure 2.2. This Figure reprerentr the equivalent of the previour care in a two dimenrional domain. The 
equation L here (42) with A = pId and different valuu of p and f, computed 10 that the solution L alwayr 
u = sin(rz)y(l - e"-'). The domain of computation fl L (0 ,  and decompored in four equareu. The plot 
0 reprerentr the cadd p = 1 with M = N, M = N + 1, M = 3N (them ir no difference between the two last 
experimentr and the Bmt cam L a bit lesr precise but cannot really be dbtingubhed from the two last cases). 
The plot o nprenentr the experiment with p = ea+" that L a very rmooth function and a treatment with 
no overintegration giver the same accuracy M the previour plot (that certainly aLo cornspondr to the best 
fit). Now comer the treatment of the case p = 1 + c o s ( 2 r t  + 3 x 4  which ir a rmooth function but is worse 
than u. The plot A comepondr to  no overintegration and we clealy me that  rome degree of overintegration 
is necessary to recover the optimal accuracy, M rhown in the cadd whom M = N +  1 (plot a) and M = 3N 
(plot A). 

Figure 3.1. On thL plot we prove that the ringularity of the function not relevant for the need 
of overintegration. We conrider the problem L (52) for two different domain decomporitionr A and €3. They 
are 

A B 

The t h m  plotr represent the dbcretuation e m r  in the remi-norm with no overintegration. The plot o 
cornrpondr to the rolution u = rin(2y) for the two cmoa A and B. They both coincide rince the defom-ation 
is in the z-dinction and the solution only dependr on y. Next, we repeat the experimentr with u = sin( f )  
and we arrive to  the (a priori) rurpriaing n ruh :  plot A for A, and 0 for B. We refer to eection 3.1 for the 
explanation. The fact that B k even better in thir cam k due to  the fact that  the dbcretuation on the two 
domainr ir more equilibrated and that the left domain in c w  A ir too 10118. 

Figum 2.2 Figure 3.1 
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Figum 3.2. T h b  plot ie to prove that the overintegration can even have a negative effect. Again we consider 
equation ( 5 2 )  for p = 1, with a decomporition of Cl = [0,7j x 10, 11 into two rubdomainr: 

The interface is described by the equation t = $ - 3 1 ~ 1 ~ .  Thie equation ie not regular and ita interpolant 
is more rough when the degree ie higher. Since thie interpolant ie the only geometric factor for the discrete 
problem we can underatand the plotr A and A that correspond to M = N and M = 2 N ,  rerpectively, for 
the approximation of the rolution u = sin( 3). A8 before, if the deformation m d  the Iolution are in different 
directionr (thie ia a very particular caee !!!), for example u = sin2y, the behaviour of the approximation is 
particular ab0 and thia is the only caee where overintegration can help (in the c u e  of deformed geometries) 
M ia illurtrated in the plots o and corresponding to M = N and M = 2N reepectively. 

Figure 3.3. A plot of the d lc re t la t ion  error in the memi-norm when rolving ( 5 2 )  with p = 0. The domain 
n = [0 ,2 ]  x [O, 11 ie decompoeed into two rubdomaiar. 

and thia time the geometry ie tor tund in the following way. The rubdomain on the left ia mapped onto the 
reference square by the mapping t = r + O.S(lrl- l)?, while the mapping u affine in the other subdomain. 
The plot A correepond to a rolution u = hn( 3) that  only depenb  on z md ie treated both with M = N 
and M = 2 N .  The plot o ia c o m r p o n b  again to a particular c a m  u it ia related to u = sin(2y) in both 
c ~ e a  M = N and M = 2 N .  

Y 

Figulr 3.2 

0 

Y 

Figurr 3.3 
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